Những câu hỏi liên quan
Nguyễn Tuấn Anh
Xem chi tiết
Yeutoanhoc
13 tháng 6 2021 lúc 16:22

Áp dụng BĐt bunhiakovsky ta có:

`(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=(a+b)(3a+b+3b+a)`

`<=>(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=4(a+b)^2`

`<=>\sqrt{a(3a+b)}+\sqrt{b(3b+a)}<=2(a+b)`

`=>(a+b)/(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})>=1/2`

Dấu "=" `<=>a=b`

Bình luận (0)
Lê Hà My
Xem chi tiết
Akai Haruma
31 tháng 1 2018 lúc 16:12

Lời giải:

Sử dụng PP khai triển :

\(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}\geq \frac{1}{2}\)

\(\Leftrightarrow \frac{(a+b)^2}{a(3a+b)+b(3b+a)}\geq \frac{1}{4}\)

\(\Leftrightarrow 4(a+b)^2\geq a(3a+b)+b(3b+a)\)

\(\Leftrightarrow a^2+b^2+6ab\geq 0\)

\(\Leftrightarrow (a+b)^2+4ab\geq 0\). Điều này luôn đúng với \(a,b\geq 0\) tuy nhiên dấu bằng không xảy ra do \(a,b\neq 0\)

Do đó: \(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}> \frac{1}{2}\)

Bình luận (0)
Tuyển Trần Thị
31 tháng 1 2018 lúc 17:31

mk nghĩ đề bài như này ms đúng chứ

\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\)

vs a,b>0

cm \(vt=\dfrac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\dfrac{2\left(a+b\right)}{\dfrac{4a+3a+b}{2}+\dfrac{4b+3b+a}{2}}=\dfrac{2\left(a+b\right)}{\dfrac{8\left(a+b\right)}{2}}=\dfrac{1}{2}\)(dpcm)

dau = xay ra khi a=b>0

Bình luận (1)
Phạm Thị Thu Uyên
Xem chi tiết
Thắng Nguyễn
11 tháng 1 2018 lúc 21:59

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)

\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Bình luận (0)
KAl(SO4)2·12H2O
28 tháng 5 2018 lúc 20:31

Áp dụng Cauchy-Schwarz ta có:

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)

Bình luận (0)
Vân Phi Tuyết
Xem chi tiết
alibaba nguyễn
31 tháng 3 2017 lúc 19:00

Ta có: 

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu = xảy ra khi \(a=b\)

Bình luận (0)
Thắng Nguyễn
31 tháng 3 2017 lúc 21:40

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b\)

Bình luận (0)
trương thế bách
2 tháng 4 2017 lúc 16:12

em mới học lớp 6 thôi,bài này đối với em quá khó ,mong chị thông cảm và chúc chị học giỏi

Bình luận (0)
Đỗ Thu Hà
Xem chi tiết
Đặng Dung
Xem chi tiết
Trần Đạt
4 tháng 10 2017 lúc 21:57

thangbnsh@gmail.com helpme

Bình luận (0)
Trần Đạt
4 tháng 10 2017 lúc 21:58

thangbnsh@gmail.comacelegona

Bình luận (0)
lethienduc
Xem chi tiết
Mai Trung Nguyên
4 tháng 3 2020 lúc 15:21

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
6 tháng 4 2020 lúc 9:31

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Trung Kiên
6 tháng 4 2020 lúc 16:30

eos bieets

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Kiệt Nguyễn
2 tháng 8 2020 lúc 19:26

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
Phan Thanh Tâm
Xem chi tiết
quang08
31 tháng 8 2021 lúc 9:16

Tham Khao

a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c

Bình luận (0)